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grow in the absence of Pim kinases but did not reach the same 
density in 96 h (Fig. 4.4). The shRNA-mediated knockdown of 
c-Myc in TKO/Pim-3 MEFs did not completely inhibit cell pro­
liferation (Fig. 4B). Together, these results suggest that 
and do not have completely overlapping biologic activities. 
To understand how Pim-3 decreases the AMP:ATP ratio and 
inhibits AMPK phosphorylation, we measured the levels of 
PGC-la. PGC-la: activates a wide variety of transcription factors 
that result in increased mitochondrial biogenesis and oxidative 
phosphorylation (37). Increased expression of PGC-1a can lead 
to elevations in ATP levels (38), whereas PGC-la knockout leads 
to reduced ATP levels in murine hearts (39). PGC-1u expression 
and PGC-la-depcndent gene expression are induced by chemical 
activation of AMPK, and AMPK directly phosphorylates PGC­
la, leading to increased transcriptional activity (40-42). We 
found that the levels of PGC-la: mRNA and protein were greatly 
reduced in TKO MEFs, highest in Pim-3-only MEFs, and inter­
mediate in WT cells (Fig. 4C and D). To examine the contribu­
tions and c-Myc in regulating levels, we infected 
TKO MEFs with lentiviruses expressing c-Myc or Pim-3 and 
found that Pim-3 induced marked in PGC-la mRNA 
( 12-fold) and protein; the effect of c-Myc alone was a 4-fold 
increase in mRNA, and the increase in protein was quantitated 
at only 10% that of Pim-3 (Fig. 4D, £). 

The above results suggest that the increased AMP: ATP ratio 
in TKO MEFs may be attributed to low ATP levels due to de­
creased PGC-la protein, thus leading to AMPK activation. To 
examine whether ovcrcxprcssion of PGC-lo: in TKO MEFs 
was sufficient to reduce p-AMPK by increasing the level of cel­
lular ATP, we transduced TKO MEFs with a lentivirus expressing 
PGC-la. Western blots and biochemical analysis demonstrate 
that PGC-la expression in TKO MEFs decreased the level of 
p-AMPK (Fig. SA) and increased the levels of ATP (Fig. 58), 
leading to decreased 4EBP1 binding to ciF4E while increasing 
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eiF4G association with the eiF4E protein (Fig. S3). In contrast, 
PGC-1u expression in TKO MEFs showed little effect on c-Myc 
levels (Fig. SA). Thus, Pim-3, by controlling the levels of both 
c-Myc and PGC-1u, is able to impact on AMPK phosphorylation, 
mTORCl activity, 5'-cap-dependent translation, and ultimately 
cell growth (Fig. SC). 

Discussion 
The combined approach of genetic knockout, RNAi, and small­
molecule inhibition implicate the Pim kinases in regulating the 
AMP:ATP ratio and energy metabolism. These effects lead to 
the modulation of the mTORC1 pathway by AMPK and the con­
trol of cell growth. In leukemic cells, the pan-Pim kinase inhibitor 
SMI-4a stimulated the phosphorylation and activation of AMPK, 
whereas in TKO MEFs the ratio of AMP:ATP was markedly 
increased and AMPK was activated. Because AMPK is a negative 
regulator of mTORCl, we found in leukemic cells treated with 
SMI-4a and in TKO MEFs that mTORC1 activity is inhibited and 
cap-dependent translation is significantly decreased. In MEFs, 
the expression of Pim-3 alone could reverse these processes, low­
ering the AMP:ATP ratio, decreasing the activation of AMPK, 
and increasing cap-dependent translation, all resulting in cellular 
growth rates comparable to WT MEFs. The differences between 
the TKO and Pim-3-only MEFs could be explained in part by 
the Pim-3-mediated increased c-Myc because the latter controls 
multiple transcription factors that regulate cell growth and 
metabolism (35, 36). Infection of TKO MEFS with a lentivirus 
expressing c-Myc increased the growth of these cells but did 
not duplicate the growth curve of Pim-3-expressing MEFs. 

In muscle and fat tissue, the ability of activated AMPK to 
maintain an energy balance is achieved in part by stimulating 
PGC-Ia (41). The ability of PGC-Iu to coactivate multiple 
transcription factors makes this protein a master regulator of 
mitochondrial biogenesis ( 43). Considering this link between 
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Fig. 4. Pim-3 and c·Myc affect PGC·1(xlevels. (A) Growth curve of TKO MEFs expressing empty vector (EV), c·Myc. or Pim-3 as determined by an MTI assay. 
Percentage values are relative to the value of VfT MEFs at the 96 h time point (100%). The data points are the average of three independent measurements, 
and the standard deviation from the mean is shown. (8) TKO/Pim-3 MEFs were infected with nontargeting shRNA (shctl) or c-Myc targeting shRNA (shMyc) 
lentiviruses. Equal numbers of shctl and shMyc cells were plated 48 h postinfection, and after an additional 72 h viability was determined by an MTT assay and 
represented as a percent absorbance (%Abs) with shctl set at 100%, The data points are the average of three independent measurements, and the standard 
deviation from the mean is shown. (Inset) lysates were prepared at 120 h postinfection and probed for the indicated proteins by Western blotting. (0 PGC·1u 
protein levels in MEFs as determined by Western blotting. (D) PGC-1(t mRNA levels in primary MEFs fWT. TKO, Pim-1 -2+, -3+1"") or TKO MEFs infected with 
EV, c-Myc. or Pim-3 lentiviruses as determined by QT·PCR 48 h after infection. Values are the average of three independent measurements, and the standard 
deviation from the mean is shown. (E) PGC-1u protein levels as determined by Western blotting in TKO MEFs 48 h postinfection with EV, c-Myc, or Pim-3. 
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Fig. 5. Expression of PGC·ln restores the AMP:ATP ratio in TKO MEFs. (A) PGC·1(I overexpression in TKO MEFs reduces AMPK activation. Lysates were pre­
pared from TKO MEFs 48 h after transduction with empty vector (EV) or PGC·1(tlentiviruses, and protein levels compared by Western blotting. (8) ATP levels 
determined in lysates from Fig. SA as described in Materials and Methods. Values are the average of three independent measurements, and the standard 
deviation from the mean is shown. (0 Schematic summary of biologic changes observed in TKO MEFs expressing Pim-3. 

AMPK and PGC-la in the sensing and regulation of the cell's 
energy status, the levels of PGC-la were investigated and found 
to be significantly lower in TKO MEFs. In comparison, Pirn-3-
containing MEFs showed increased levels of PGC-lo: relative 
to WT. Therefore, in the case of the TKO MEFs, chronic AMPK 
activation coupled with drastically reduced levels of PGC-la 
protein resulted in an elevated AMP: ATP ratio. Accordingly, 
infection of TKO MEFs with a lentivirus expressing PGC-la 
was shown to increase ATP levels and decrease AMPK activation. 
The increased PGC-la levels in Pim-3-only MEFs cannot be 
attributed solely to increased c-Myc because TKOjc-Myc MEFs 
showed lower levels of PGC-la mRNA and protein relative to 
TKOfPim-3 MEFs. This suggests the possibility that Pim-3 and 
c-Myc could cooperate in regulating PGC-la levels in MEFs. This 
cooperation may extend beyond transcription/translation because 
PGC-1a levels and activity are regulated by multiple posttransla­
tional mechanisms (37). 

Pirn-3 is the least-studied kinase of the Pim family; however, it 
has been linked to the development and progression of colon and 
pancreatic cancers (2-4, 44). Despite the high sequence identity 
and overlapping substrate specificity of the Pim kinases, Pim-3 
expression alone is shown to overcome at least some of the defects 
found in the loss of both Pim-1 and Pim-2, including growth rate. 
Additionally, the knockout of Pim-1 and -2 and the expression of 
Pim-3 only Jed to a marked increase in c-Myc protein relative to 
WT MEFs. The observation that the transduction of Pim-1 or -2 
into MEFs containing Pim-3 suppressed c-Myc levels suggested 
the possibility that individual Pim isoforms may regulate each 
other either directly or through substrate competition. This poses 
the question of whether Pim isoforms either individually or acting 
in concert regulate different biological processes and under what 
cellular circumstances. The question of the activity of Pim iso­
forms is of importance to the design of small-molecule inhibitors 
targeting these kinascs and their use in the treatment of diseases, 
including cancer. Both Pim-1 and -2 are known to enhance c-Myc­
induccd transformation (6, 12) and phosphorylate and stabilize 
c-Myc protein, leading to increased transcriptional activity (9). 
In the MEFs used in this study, Pim-3 expression alone enhanced 
cap-dependent translation, increased c-Myc levels without chan­
ging the protein's stability, and increased the cell growth rate. 
Because elevated levels of both Pim-3 and c-Myc arc found in 
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gastrointestinal cancers, our results suggest the possibility that 
Pim-3 might enhance the growth of these tumor cells in part by 
regulating c-Myc levels, thus highlighting the potential utility of 
Pim-3 targeted inhibitors. 

Materials and Methods 
Cell Culture. MEFs were derived from 14.5-d-old embryos and were gena­
typed as described (45). For stable cell lines, TKO MEFs were transduced 
with lentiviruses encoding empty vector, PIM-1, Pim-2, Pim-3, or c-Myc and 
selected with puromycin (4 ~gjml). 

Construction of Lentlvlral Vectors. The open reading frames of PIM-1 (human, 
33 kDa isoform), PIM-2 (mouse), Pim-3 (mouse), c-Myc (mouse), and PGC·1a 
(human, a gift from Young·ln Chi, Department of Molecular and Cellular 
Biochemistry, University of Kentucky, lexington, KY) were amplified by PCR 
from full-length eDNA clones and subcloned into the Agei-Miul sites of 
plex·MC5 lentiviral vector (Open Biosystems). Methods for preparation of 
lentiviral stocks are detailed in 51 Materials and Methods. 

Quantitative RT·PCR (QT·PCR). Total RNA was isolated from MEFs using 
the RNeasy kit (Qiagen) according to the manufacturer's protocol. The 
first-strand eDNA was synthesized using Superscript first-strand synthesis 
kit and Oligo (dT) primer (Invitrogen). 

Biochemical AnaiYJIS. K562 cells were transfected with scrambled siRNA or 
siPim-1 (ON-TARGETplus SMARTpool, Thermo Scientific) using lipofecta­
mine™2000 (Invitrogen) according to the manufacturer's protocol, and 48 h 
posttransfection lysates were prepared. Cell growth was measured using the 
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTI) assay. 
ATP, ADP, and AMP were measured by HPLC as described previously (46), 
and ATP was also measured using the ATP Bioluminescence Assay Kit HS II 
(Roche) with 105 cells. eiF4E was captured on m7-GTP sepharose (GE life· 
sciences) from WT and TKO MEFs lysate and bound 4EBP1 and e1F4G deter­
mined by Western blotting. 

ns.Methlonine Incorporation. Cells were serum starved for 1 h in methionine· 
free medium (Invitrogen), followed by labeling with 100 mCi of 
>ss.methioninejml. lysates and labeled proteins were precipitated with 
trichloroacetic add on glass microfiber filters (Whatman) using vacuum 
filtration, and 35 5-incorporation was counted. 

Cap· vs. IRES-Dependent Translation. A bicistronic retroviral vector, pMSCV j 
rluc-poiiRES-fluc (a gift from Peter B. Bitterman, Department of Medicine, 
University of Minnesota, Minneapolis, MN), was used to produce viral 
particles for infecting WT, TKO and TKOjPim·3 MEFs. Cells were collected 
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48 hr postinfection and Renilla/Firefly luciferase activities were quantified 
using the dual-luciferase reporter assay system (Promega) and a luminometer 
according to the manufacturer's instructions. 

Polysome Profile Analysis. Sucrose density gradient centrifugation was 
employed to separate the ribosome fractions as described previously (47). 
c-Myc mRNA level in each fraction was measured by PCR. 
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Elevation of Receptor Tyrosine Kinases by Small Molecule 
AKT Inhibitors in Prostate Cancer Is Mediated by Pim-1 
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Abstract 
The PI3K/AKT pathway is hyperactivated in prostate cancer but its effective therapeutic targeting has proven 

difficult. In particular, the antitumor activity of AKT inhibitors is attenuated byupregulation of receptor tyrosine 
kinases (RTK) through an uncharacterized feedback mechanism. In this report, we show that RNA interference­
mediated silencing or phannacologic inhibition ofPim-1 activity curtails AKT inhibitor-induced upregulation of 
RTKs in prostate cancer cells. Although Pim kin uses have been implicated in cap-dependent translational control, 
we find that in the context of AKT inhibition, the expression ofRTKs is controlled by Pim-1 in a cap~ independent 
manner by controlling internal ribosome entry. Combination of Pim and AKT inhibitors resulted in synergistic 
inhibition of prostate tumor growth in vitro and inl'it'o. Together, our results show that Pim~1 mediates resistance 
to AKT inhibition and suggest its targeting to improve the efficacy of AKT inhibitors in anticancer therapy. Cancer 
Res; 73{11}; 1-10. ©2013 ,\ttCR. 

Introduction 

The PI3K/ AKT pathway is commonly activated in human 
cancer and controls cellular processes that contribute to U1e 
initiation tmd maintenance of cancer (1). It is activated in 40% 
of primary and 70% of metastatic prostate cancers secondary 
to mutations or deletions in PTEN (1-3). Activation of the 
pathway can be associated with mutations in the phosphoi­
nositide 3-kinase (PI3K) catalytic subunit PliO a and regula~ 
lory subunit (1), mutations in each of the 3 AKT isoforms (1, 4), 
and activation of receptor tyrosine ldnases (RTK) by mutation 
(e.g., EGF receptor; EGFR) or gene amplification (e.g., HER2), 
which ctm result in activnlion of downstream PI3K/AKT (1, 5), 
Multiple small~molecule inhibitors have been developed to 
target PI3K/mTOR or AKT (6), but the efficacy of these drugs is 
compromised by the stimulation of compensatory signaling 
patlnvays that have the potential to enhance tumor growth (7-
9). There is accumulating evidence that inhibition of the PI3K/ 
AKT pathway can lead to adaptive resistnnce due to uprcgula~ 
Lion and activation ofHTKs (7-9). The mechanism underlying 
the AKT inhibition-induced uprcgulation of some of these 
HTKs, including HER3, INSH, and insulin~likc growth factorD 
1 receptor (IGF~IR), has been shown to, in part, involve FOXO 
transcription factors (7); however, these tnmscriplion factors 
do not seem to be involved in the AKT inhibition~induced 
upregulation of other HTKs, including MET, liER2, and RET (7). 
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The Pim family of serine/threonine kinases regulates cell 
sunrival pathways and has been implicated in the progression 
of several human cnncers, including prostate cancer (10). 
Clinically, the expression of the Pim ldnascs is elevated in 
human prostate cancer ( 1 0), in which the PI3K/ AKT pathway is 
activated, and the levels of Pim correlate with sunrivnl of 
patients with certain subtypes of human lymphoma ( 11 ), 
suggesting that the Pim kinases could play an important role 
in regulating tumor growth and, potentially, patient sunrival. 
As the Pim kinases have overlapping nctivity with AKT with 
both rebrulating apoptosis, cell-cycle progression, and cellular 
metabolism ( 12-13), and AKT and the Pim kinases share 
substrates in common (12-13), it has been suggested that Pim 
could play an important role in Uw activation of AKT (14). 
Reciprocal regulation of AKT and Pim~ llcvcls is suggested by 
the report that forced expression of nuclear-targeted AKT 
induces Pim-1 and either expression of a dominant-negative 
Pim~ 1 or genetic deletion of the enzyme increa<>cd AKT 
expression and phospho-AKT levels in cardiomyocyles (14). 

Here, we show that inhibition of AKT leads to transcriptio­
nal induction of the Pim·l protein kinase, and in turn, Pim-1 
regulates the expression of RTKs. The anticancer activity 
of small-molecule AKT and Pim kinase inhibitors has been 
investigated. 

Materials and Methods 

Reagents and antibodies 
GSK690693 was provided by GlaxoSmithKline for in l'itro 

and in vivo studies. MK2206, PP242, AZD8055, and BEZ235 
were purchased from Selleck Biochemicals. Antibodies arc 
listed in the Supplementary Data. 

l'lasmids 
The 5'-unlrunslnted region (UTR) of human ,Met (15) was 

amplified by PCR using genomic DNA extracted from PC3-LN4 
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cells as template with the following 2 primers: 51~ATAC~ 

TAGTGCTGCAGCGGCCGCGGTGGCTGA-3' and 5'-AACCAT­
GGCCCAACCTCCAGGATGTCGGCGCA-3'. The PCR product 
was sequenced and cloned into the EcoRI and Ncol sites of the 
plasmid of pRF to create pR·MET -F. 

Jmmunoblotting 
Cells were harvested in lysis buffer A consisting of 

50 mmol/L Tris, pH 7.4, ISO mmoi/L NaCI, I% NP-40, aad 
5 mmoi/L EDTA. Protein concentrations were dctennined 
by DC Protein Assay (Bio-Rad). 

Cell culture and lransfeclions 
Cell lines were grown in RPM! (PC3-LN4, DU145, 22RVI, 

VCAP, and BT474) or Dulbecco's Modified Eagle Medium 
[!leLa, mouse embryo fibroblasts (MEF)] in 5% C02. DU145, 
22RV1, VCAP, BT474, and I-lcLa cells were supplied by Amer­
ican Type Culture Collection and passaged in our laboratory 
for less than 6 months after receipL PC3-LN4 cells were 
described before (16). The MEFs, which were triple knockout 
(TKO) for all Pim genes, were previously described (17). Cells 
were transfected with Lipofectamine 2000 reagent according 
to manufacturer's instructions. 

U.eal~Ume PCR analyses 
SYBR Green reactions were done using a BioRad iQS quan­

titative real-time PCR (qRT-PCR) system. For data analysis, 
raw counts were normalized to the housekeeping gene aver­
aged for Uw same timepoint and condition (6.C1). Counts are 
reported as fold change relative to the untreated control 
(2---Mo). All primers were designed and synthesized by lnte~ 
grated DNA Technologies. Primers are listed in the Supple­
mentary Data 

Luciferase assays 
Firefly luciferasc and Renilla luciferase activities were mea­

sured in a luminometer (Model TD 20/20; Turner Designs) 
using the reagents provided with the Dual Luciferase Reporter 
kit {Promega). 

Son-agar colony formation assays 
The soft-agar assay was conducted on 6-well plates in 

duplicate. For each well, 5,000 cells were mixed in growth 
medium containing 0.7% agarose and GSK690693 or SMI-,1a. 
Cells were then layered over 1% agarosc in regular medium. 
Medium containing GSK690693 or SMI-4a was added to each 
well every4 days. The assays were lenninated afier21 days, and 
colonies were stained with crystal violet and counted under a 
microscope. 

Cell proliferation measurement 
Cells were plated in 96-well plates at 3,000 cells per well in 

100 J.LL of 10% FBS-containing medium. After 24-lwur incuba­
tion, the medium was replaced with 0.2% FBS medium with 
GSK690693, SMHa, or dimethyl sulfoxide (DMSO) for 72 

hours. Cell viability was measured using a MTT assay. The 
absorbance was read at 590 nm with a reference filter of 
620 nm. 
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In vitro transcription and RNA transfection 
The mRNAs were purified with MEGA Clear Kit (Ambion), 

quantified spectrophotometrically, and their qualities were 
verified on a denaturing agarose gel. RNA tnmsfection was 
conducted with TransiT~mRNA Transfeclion Kit (Mirus) 
according to the mLmufacturer's suggestion. An aliquot of 1 
J.Lg of capped mRNAs and 2 J.1L of TransiT~mRNA reagent 
together with 1 J.1L of mRNA boost reagent wus used to 
transfect 80% confluent cells grown in 12-well plates. At 16 
hours after transfection, cells were harvested and lysed for 
luciferase assay. 

Animal experiments 
Four- to six~week~old nu/nu nude male mice were obtained 

from Charles River Luboratories and maintained in pressurized 
ventilated caging. All studies were conducted in compliance 
with Institutional guidelines under an Institutional Animal 
Care and Use Committee-approved protocol (MUSC#3081). 
For efficacy studies, mice with well~cstablished tumors were 
selected and randomized 14 days after implantation (size> 150 
mm3

); PC3-LN4 xenobrraft tumors were established in nude 
mice by subcutaneously injecting 5 x 106 cells suspended in 
PBS into the right flank. Mice were treated with vehicle, 
GSK690693, or SMI-4a, or GSK69069:J + SMI-4a at the indi­
cated doses. GSK690693 was dissolved in 30% propylene glycol, 
5% Tween-SO, 65% of 5% dextrose in water (pH4-5), and 
administered intraperitoneally daily, whereas SMI-4u was dis­
solved in the same solvent and administered by oral gavage 
twice daily. Tumor dimensions were measured with a caliper 
and tumor volumes were calculated [tumor volume (mm:1

) = 
(lenb•th x width2)/2]. 

Statistical analysis 
The results of quantitative studies arc reported as mean ± 

SD or mean± SEM (for animal experiments). Differences were 
analyzed by Student t lest. P < 0.05 was regarded as significant. 

Results 

AKT inhibition induces Pim-1 e.q»ression in prostate 
cancer cells 

Treatment of the prostate cancer PC3-LN4 cells with the 
pan-AKT inhibitor GSK690693 markedly increased the levels of 
Pim-1 protein in a time- and concentration-dependent fashion 
(Fig. lA and B) but had a minimal effect on the expression of 
Pim-3 protein and reduced the levels ofPim-2 (Fig.1C). Similar 
results were obtained using another AKT inhibitor, MK2206, 
and a PI:JK/mTOR dual inhibitor, BEZ235 (Fig. IC). The 
induction of Phn-1 was also observed with GSK690693 treat~ 
ment of human prostate cancer cell lines DU145, 22RV1, and 
VCAP (Supplementary Fig. SlA). The effect of GSK690693 on 
Pim-1 was not secondary to an off-target effect as knockdown 
in PC3-LN4 cells of all3 AKTs with siRNAs increased the levels 
of Pim-1 protein (Fig. I D). Treatment of PC3-LN4 cells with 
GSK690693 or MK2206 resulted in elevations in the level of 
Pim-1 mRNA. but not Pim-2 or Pim~3 (Fig. 1E). Similarly, 
treatment of PC3-LN4 cells with siRNAs directed at AKTI, 
AKT2, and AKT3 also resulted in the elevation ofPim~ 1 mRNA 
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Figure i. AKT inhibition induces expression of Pim· 1. PC3·LN4 celts were treated with 5 ).tmoi/L GSK690693 (A) for the times lndlcated,lncreasing doses of 
GSK690693 (B) as Indicated for 24 hours, 5 f.imol/l GSK690693, 2 Jlmoi/L MK2206, or 0.5 llmoi!L BEZ235 (C) for 24 hours, and siRNAs against AKT1, 
AKT2, and AKT3 or a negative control slANA (0) for 72 hours. Whole-ceU lysates were subjected to immunoblot analyses with the Indicated antibodies. E, cells 
as inC were harvested and total ANA was isolated. Real-time qPCA analyses were conducted with Plm-1, Pim·2, Pim·3·specific primers. Results were 
nonnallzed to the expression of p-actln. F, PC3·LN4 cells were treated with siANAs against AKT1, 2 (siA i ,2), AKT3 (siA3), AKT1, 2, 3 (siA 1 ,2,3), or a 
nontargeting control slANA (siC) for 72 hours and then ANA Isolated, and real-time qPCR with indicated primers conducted. G, PC3-LN4 cells were 
transfected with a luciferase reporter containing a 3.0 kb human Pim-1 promoter. After 24 hours, cells were treated with DMSO or 2 different doses of 
GSK690693 (GSK) as Indicated for additional 24 hours before harvesting for luciferase assays. Results were normalized to Renilla luciferase activity by a 
cotransfected plasmid carrying this enzyme. Data In E, F, and G are mean ± SO of 3lndependent experiments. •, P < 0.05 compared with the corresponding 
negative control. GAPDH, glyceraldehyde-3-phosphate dehydrogenase. 

(Fig. lF). To further determine whether GSK690693 regulates 
Lhe transcription of the Pim-1 gene, a3.0 kb promoter fragment 
of the Pim-1 promoter was cloned upstream of a luciferase 
reporter. Addition of GSK690693 increased the activity of this 
promoter in PC3-LN4 cells (Fig. lG). 

Uprcgulation of Pim-1 is required for AKT inhibitor­
associated induction of U'l'Ks 

Consistent with previous reports of upreb'Ulalion of these 
HTKs in response to AKT inhibition (7), treatment of PC3-LN4 
cells with GSK690693 increased the protein levels of multiple 
l\TKs, including MET, EPHA2, !ION, EGFR, I!ER2, HER3, INS!\, 
and IGF~IR (Supplementary Fig. SIB). In addition, we observed 
increased extracellular signal-regulated kinase (ERK) phos~ 
phorylation resulting from treatment with GSK690693 (Sup~ 
plementary Fig. SIB). This is in keeping with previous finding 
that PI3K inhibition leads to mitogen~activaled protein kinase 
pathway activation (18-19). 

GSK690693 also completely blocked the phosphorylation of 
2 well-known AKT substrates, GSK3P and PMS40, showing 
the effectiveness of this compound (Supplementary Fig. SiC) 
and caused the paradoxical hyperphosphorylation of AKT at 
its 2 ret,rulatory sites (Thr308 and Ser473; Supplementary 

www.aacrjoumals.org 

Fig. SIC). a common property of ATP-competitive AKT inhi­
bitors (20). 

To determine wheUter Pim-1 plays an important rebrulatory 
role in the ability of Ak'T inhibitors to modulate RTKs, we first 
determined the effects of Pim-directed siRNAs and small· 
molecule inhibitors. The usc of siRNA directed at Pim-1 
showed that a forced reduction in Pim-1 levels markedly 
reduced the abilit-y of GSK690693 to elevate the protein levels 
of multiple l\TKs, including MET and EPHA2, HER3, HER2, 
INSR, and IGF-IR, as well as the phosphorylation ofERK (Fig. 
2A). The addition of SMI~4a., a small-molecule Pim kinase 
inhibitor (21), reduced GSK690693-induced upregulation of 
RTK protein levels in PC3-LN4 (Fig. 2B), DU145, 22RV1, and 
VCAP cells (Supplementary Fig. 52) 

The results of phospho~RTK antibody array (reverse~ phase 
protein array; RPPA) analysis revealed Utat treatment ofPC3-
LN4 cells with GSK690693 increased the tyrosine phosphory­
lation of a number of RTKs tested in the assay, that is, MET, 
EPHA2, HER2, !NSR, and EGFR (Supplementary Fig. 53). The 
lack of complete correlation in these assays may arise from the 
differing specificityofthe antibodies used in the RPPA analysis. 
This change in RTK phosphorylation is consistent with the 
AKT inhibitor-induced increases in the protein levels of the 
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Rgu.ra 2. Plm-1 Is required fOf elevated expression of RTKs Induced by AKT Inhibition. lmmunoblat analyses were carried out wtth the Indicated 
antibodies In PC3-LN4 cells that were treated wtth 2 dtfferent siRNAs (1 and 2) against Plm-1 as well as a nontargetlng control slANA (2 lett lanes) for 48 hours 
followed by the addition of GSK690693 (5 ~rnolll) for an addltlonal24 hours (A). 8, PC3-LN4 cells were treated wtth GSK690693 (GSK, 5 JUnol/1..) or SMI-4a 
(4a, 10 ).tmoi/L) or the combination of the 2 compounds for 24 hours. C-E, wild-type (V{T; C), Plm kinase TKO murine embryonic fibroblast cella were 
treated with 5 ).tmoVL GSK690693 for24 hol.XS; PC3-LN4 cells were treated with 3 different Plm Inhibitors, SMI-4a (4a, 10 ~Ill). SMI-16a (16a, 1 0 !lmat!L), or 
K00135 (K, 5 1J111olll) for 24 hours (D); PC3·LN4 cal\5 were transfected with a nontargetlng control slANA, slANA against Plm-1, an empty vector, or a 
Plm-1-exprasslng plasmid for 72 hours (E). 

RTKs; however, it cannot be ruled out that GSK690693 stimu­
lat.es RTK phosphorylation through an alternative mechanism 
(7). Treatment with SMI-4a blocked the GSK690693-Induced 
RTK phosphol')1atlon (Supplementary Fig. 53), showing that 
the inhibition ofPim reverses the activity of this AKT inhibitor. 
To further evaluate the role of Plm-1 in regulating AKT 
inhibitor-induced upregulation or RTKs, MEFs were treated 
with GSK690693. In wild·type cells, but not In the Plm klnase· 
deficient (TKO) cells, GSK690693 treatment of the cells 
increased the levels of the RTKs tested, that Is, MET, HER3, 
IGF-IR. and EPHA2 protein. as well as the phosphorylation of 
ERK (Fig. 2C). We treated PC3·LN4 (Fig. 20) I!Ild VCAP 
(Supplementary Fig. S4) cells with 3 different Plm kinase 
inhibitors, SMI-4a, SMI-16a (21), nnd KOOI35 (22), to test 
whether Pim-1 activity affects the baseline level of RTK pro­
teins in tumor cells. Treatment decreased the protein levels of 
the RTKs, for example, MET, EPHA2, and HER3, In both cell 
lines. Similarly, siRNA targeting ofPim-1 decreased the levels of 
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MET, HER3, HER2, nnd EGFR protein In PC3-LN4 cells (Fig. 2E). 
Conversely, overexpression or human Pim-1 in PC3-LN4 
increased the levels of U1e RTKB, MET, HER3, EPHA2, HER2, 
and EGFR (Fig. 2E). 

AKT inhibition increases cap-Independent translation 
AKT protein kinase activity controls protein synthesis by 

regulating the multistep process or mRNA translation at 
multiple stages from ribosome biogenesis to translation Initi­
ation and elongation (23). Although GSK690693 treatment or 
prostate cancer ceUs did not modify phosphorylation of 4E­
BP1, this compound increased phosphorylation or eiF2a and 
eliminated phosphorylation or ribosomal protein S6 (Fig. 3A). 
To further define the role or cap-dependent translation In the 
mechanism or action of this agent, GSK690693 was combined 
with 2 potent inhibitors of mTOR complex (mTORC)-1/ 
mTORC2 and thus cap-dependent translation, PP242 and 
AZD8055 (24-25). These inhibitors in combination with 
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Agure 3. AKT Inhibition Increases 
cap-Independent translation. A, 
PC3-LN4 cells were treated with 
GSK690693 (5 )lmoi/L) alone ot In 
combination with PP242 {2 JlTTloVl) 
or AZD8055 (1 1-lmoVL) for 24 hoors 
end lmmuooblottlng conducted. 8, 
dlclstronlc luclferase plasmkls 
contalnlng viral (CrPV and HCV) or 
cellular (I-IIF1 a:, VEGF, and Myc) 
IRESs were transfected Into PC3-
LN4 cells. GSK690693 (5 IJ.moi/L) 
was added 6 hours after transfectlon 
for additional 24 hours and luctferase 
actMtles were determined. Data are 
mean ±SO of 4 Independent 
experiments. •, P < 0.05 compared 
with the corresponding OMSO 
controL c. PC3-LN4 cella were 
treated with Increasing doses of 
GSK690093 as Indicated for 
24 hours and lysates examined by 
Westsm blotting. GAPOH, 
glycem.Jdehyde-3-phosphate 
dehydrogenase. 

A 

GSK690693 resulted In reduced phosphorylation of 4E-BPI and 
increased ciF2a phosphorylation compared with GSK690693 
nione (Fig. 3A), suggesting inhibition of 51-cap-dependent 
translation. We measured the binding of e1F4G and 4E-BP1 
to the 5' mRNA cap by using m7GTP-sephnrose. The structure 
of these beads mimics the 5' mRNA cap and precipitates cap­
lnterncting proteins. In agreement with the effect on phos­
phorylation of 4E-BPI, PP242, or AZD8055 in combination with 
GSK690693 strongly reduced eiF4G and increased 4E-BP1, 
binding to m7GTP-sephurose, whereas GSK690693 alone did 
not have a significant effect (Supplementary Fig. SSA). How­
ever, lhe treatment ofprostntc cancer cells with these mTORCl 
inhibitors did not reduce the GSK69061J3..Jnduccd elevution of 
MET, EPHA2. HER3, nnd IGF-IR (Fig. 3A). A recent study (26) 
using Torln l, an ATP-competitive mTOR Inhibitor, show1..>d 
that Torin 1-rcsistant mRNAs arc enriched for RTKs such as 
MET, IGF-IR, and INSR. indicating that the translation initi­
ation of these mRNAs do not depend on mTOR activity (27). We 
found thnt treatment of PC3-LN4 cells with PP242 or AZD8055 
Indeed did not inhibit the expression of MET, EPHA2. HER3, 
IGFIR, or INSR (Supplementary Fig. SSB). In addition, the 
expression of Bcl-2 whose L:runslntion under cellular stress 
(28) has been shown to be controlled by a cap-independent 
mechanism was not suppressed by treatment with mTOR 
inhibitors, whereas proteins known to be sensitive to mTOR 
lnhibiton, YB-1. HSP90, RPS7 (26, 29), were reduced (Supple· 
mentary Fig. SSB). Reduced efF4G and increased 4EBP1 bind­
ing to m7GTP-sephnrose, and increuscd eiF2a phosphoryla-
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lion (Supplementary Fig. SSC) confirmed that cap--dependent 
translation was efficiently inhibited. Together these data sug­
gest that uprcgulatlon of RTKs Is not controlled by cap­
dependent mechanisms. 

Under conditions of decreased cop-dependent translation, 
the internal ribosome entry site (IRES}-mediated translation 
can play a larger role In regulating protein synthesis (30). 
Recently, it has been shown that inhibition of PI3K/mTOR 
leads to increased IRES-mediated translation (8). Inhibition of 
AKT by GSK690693 resulted in increased IRES activity mea­
sured by ratio of firefly to Renilla luciferase activities In 
constructs containing either cellular {hypoxia-inducible fac­
tor- IIX (HIFI<X), Myc, nnd VEGF; ref. 31] or viral [cricket 
paralysis virus (CrPV) and hepatitis C virus (HCV); ref. 32] 
IRES sequences (Fig. 38). In agreement with these findings, 
GSK690693 induced expression of Bcl-2, Myc. VEGF, and 
HIFla, all of which can be translated in n cop-independent 
manner under cellular stress (28, 31, 33-34), further suggesting 
the possibility that cap-independent translation is upregulated 
(Fig. 3C). 

Pim-1 reguJates RTK expression through cap­
independent translation 

Expression of human Plm-1 In PC3-LN4 cells did not affect 
the levels ofRTK mRNAs (Supplementary Fig. 56A nnd B) or the 
half life of U1e RTKs (Supplementary Fig. 56C), suggesting that 
Plm-1 may control the levels of these proteins through a 
trunslationa1 mechanism. Plus. GSK690693 increased cup-
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independent trnnslation (Fig. 3). Taken together, we speculat­
ed thatlhe uprebrulalion of the RTKs induced by AKT inhibitors 
could be controlled, at least in part, by a cap-independent 
mechanism. We first detennined whether the MET 5' -UTR 
contains an IRES that could be stimulated by either GSK690693 
or Pim-1. The MET 5' ~UTR is relatively long (408 nt) and is 
guanine-t..')'losine (GC)-rich (15), which are 2 common proper­
lies of IRES-containing 51-UTRs. The S'·UTR of MET was clon­
ed and inserted in front of firefly lucifcrase in the dicistronic 
vector pRF (35). The presence of the MET 51 ~UTR sequence 
increased the expression of downstream firefly luciferase 
relative to Renil/a by 38-fold compared with lhe vector control 
(Fig. 4A), suggesting that it could function us an IRES. In 
comparison, the IRESs of encephalomyocardilis virus (EMCV), 
HIFla, and VEGF produced 18-, 9·, and 13-fold increases, 
respectively. In PC3-LN4 cells transfecled with the pRF vector 
containing the MET IRES, overexprcssion of Pim-1 or treat­
ment ofGSK690693 resulted in an increase in ratio of firefly to 
llenilla luciferase activities as compared with control treat­
ment (Fig. 4A). Knockdown of Pim·l suppressed GSK690603-
induced MET IRES activities (Supplementary Fig. 57). Collec­
tively, these results indicated that Pim-1 can potentially reg­
ulate tmnslation of MET in a cap-independent fashion. 
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To determine whether the MET 5'-UTR is sufficient to drive 
translation by acting as an IRES and to rule out the possibility 
of a cryptic promoter in the 5'-UTR of MET, we in vitro 
transcribed the pRF vector containing the MET IRES yielding 
a capped dicistronic mRNA, and then transfected this mRNA 
directly into PC3-LN4 cells. Insertion of the MET or VEGF 51

-

UTR resulted in a 7- or 5-fold increase in the firefiy/Renil/a 
ratio, respectively. In comparison, when the pRF vector con~ 
taining the viral EMCV IRES was transcribed and transduced 
into these cells, the firefly!Renilla ratio increased by 114-fold 
(Fig. 4B). Thus, in comparison with a viral IRES, both the MET 
and VEGF sequences have relatively weak IRES activities. 
Besides MET, other RTKs including IGF-IR have been reported 
to have IRES elements in their 5'-UTRs (36). As shown in Fig. 
4C, the IRES activity of the 5'-UTR ofiGF~IR was increased on 
treatment of the cells witit GSK690693 or Pim-1 overexpression 
and, conversely, was decreased on knockdown of endogenous 
Pim-1 protein levels. Furthermore, knockdown ofPim~l sup~ 
pressed GSK690603·induccd IGF~IR IRES activities (Suppleo 
menlary Fig. 87). It is possible that this mechanism is imporo 
tnnt for the control of other RTKs because in general these 
genes have long S'~UTRs. In addition, knockdown ofPim-1 in 
PC3-LN4 cells led to a reduction ofiRES activities of viral, CrPV 

c 
IGF-IR IRES 

• • 

i .J 
MET VEGF EMCV 

GSK690693: + + + 
siPim~1: 2 

Figure 4. Pim-1 regulates ATK translation by controlling IRES activity. A, dlcistronic plasmids pAF, pR·EMCV-F, pA-HIF-F, pR-VEGF-F, and pR·MET·F were 
transfected into PC3-LN4 cells. A Plm·1--expressing plasmid was cotransfected with pR-MET-F as indicated. GSK690693 (GSK. 5 fJmoi/L) was added 6 hours 
alter transfection and luciferase activities were determined 24 hours after transfection. Data are mean ± SO of 4 Independent experiments. •, P < 0.05 
compared with the MET. 8, capped, polyadenylated dicistronic mRNAs were transfected into PC3-LN4 cells. The ratios olfirefly/Reni//a activities are shown 
relative to the ratio for RF, which was given a value of 1. C, a dicistronic plasmid containing IGF-IA IRES was transfected into PC3-LN4 cells with or 
without either a Pim-1-expressing plasmid or siANA targeted at Pim-1 . GSK690693 (GSK, 5 fJmoi/L) was added 6 hours after transfection and at 48 hours 
luciferase activities were determined. 0, dicistronic fuciferase plasmlds containing viral (CrPV and HCV) or cellular {HIF1a and Myc) IAESs were transfected 
Into PC3·LN4 cells together with slANA against Pim-1 or a nontargeting control slANA, and luciferase activities were determined 48 hours after transfection. 
E, PC3-LN4 cells were treated with 2 different siANAs (1 and 2) against Plm-1 as well as a nontargeting control slANA (2 !eft lanes) for 48 hours followed by 
adding GSK690693 (5 fJmoi/L) for additional 24 hours as indicated. Whole~celllysates were subjected to immunoblot analyses with the indicated 
antibodies. Data In 8, C, D, and E reflect the mean ± SD of 4 independent experiments, •, P < 0.05 compared with corresponding negative controls. 
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and HCV, and cellular, illF!a and Myc, IRESs (Fig. 40). These 
data suggest that Pim-1 could be a more gcnernl regulator of 
IR£S..mediated translation. This concept is further supported 
by our finding that the uprcgulntion of proteins whose 
translation can be controUcd by nn IRES-mediated mecha­
nism under cellular stress, Bcl-2, Myc, VEGF, and HJFla, is 
stimulated by GSK690693 and requires Pim-1 expression 
(Fig. 4E). 

Ribosomal stress abrogates AKT lnhibition-indoced 
upreguJation o( RTK expression 

Pim-1 has been shown to physically Interact with ribosomal 
protein 519 and to cosediment with ribosomes (37-38). 
Knockdown of ribosoma1 protein 519 or S6 ubollshcd upre­
gulation of MET, EPHA2, HER3, and IGF-!R induced by 
GSK690693 without affecting Pim-1 induction (Fig. 5A). Con­
sistent with findings from other laboratories (38-40), reduced 
protein expression of ribosomal protein 56 was seen when 519 
was decreased by siRNA and vice versa (Fig. 5A). To test the 
effect of ribosomal stress on RTK upregulation independent of 
ribosomal protcin knockdowns, low concentrations of acti­
nomycin 0 (ActO) were used to Inhibit RNA polymerase I, and 
thus Induce ribosomal stress (41-42). Similar to 519 and 56 
knockdowns, ActO treatment blocked upregulution of MEr, 
EPHA2, HER3, and IGF-IR induced by GSK690693 (Fig. 5B). 
ActD treatment also Inhibited uprcgulation of MET, EPHA.2, 
and HER3 resulting from direct Pirn-1 overexprcssion In PC3-
LN4 ceUs (Fig. 5C). Ribosomnl stress did not seem to affect 
global translation as the expression of Src and ERKl/2 pro­
teins was not altered (Fig. 5A and B). These data suggest that 
Pim-1 may work through intact ribosomes to control RTK 
expression. 

A B 

P!m-1 Regulates Expression of RTKs 

ComblnaUon treatment with an AliT and a Pim inhibitor 
synergistically blocks prostate tumor growth In vllro and 
in vivo 

As n preliminary test of whether combined inhibition of AKT 
and Pim kinascs might provide synergistic antitumor efficacy, 
we tested the effects of the inhibltom on the proliferation of 
PC3-LN4 cells In vitro. Treatment ofPC3-LN4 cells with the Plm 
Inhibitor SMI-4a in combination with the AKT inhibitor 
GSK690693 resulted In a synergistic enhancement of the 
inhibition of proliferation as shown by combination index of 
less than 0.5 (Fig. 6A: data not shown), and a markedly greater 
reduction in both the numbers and the size of colonies seen in a 
soft-agar colony formation assay (Fig. 6B). GSK690693 and 
SMI-4a blocked the proliferation ofOU145 in a similar fashion 
(Supplementary Fig. 58). 

To test the activityofthcse agents in vh'o, PC3-LN4 cells were 
Injected into mice and treated with GSK690693 alone, SMI-4a 
alone, or both drugs In combination on a daily basls for 21 days 
starting at 15 days after tumor impluntatlon. When used alone, 
treatment of these drugs caused a modest inhibition of tumor 
growth, whereas the combined treatment resulted in a 
markedly greater inhibition of tumor growth (Fig. 6C). As 
shown in Fig. 60, immunoblot analysis of lysates of tumors 
hRn'estcd at the tenninatlon of the experiment on day 36 had 
upregulawd the levels of MET, EPHA2, and HER3 protein In 
mice treated with GSK690693 as compared with the tumors 
from mice treated with vehicle (Fig. 60). interestingly, the 
levels of Plm-1 were Increased in the combined therapy, und 
could suggest an in vivo intcroction between these agents 
cannot be ruled ouL This uprcgulatlon of the RTKs was 
significantly reduced In the tumors from mice treated with 
a combination of GSK690693 and SMI-4a (Fig. 60), 

C DMSO ActO (5 nmol/l) 
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Agure 5. Ribosomal stress abrogates RTK upregulatlon Induced by GSK69D693. A, PC3·LN4 cells were treated 1or 48 hours with siRNAs against 
Plm-1, ribosomal protein 519, S6 as well as a nontargeting control slANA (21eft lanes) followed by eddlng GSK690693 (5flmollt) for an addltional24 hours. 
8, PC3-LN4 cells were treated with increasing dose of ActO wtth end without 5flmol!l. GSK690693 for 24 hours. C, PC3·LN4 cells were transfected with a 
Plm-1-expresslng plasmk:l or a control vector. ActO {5 nmol/L) was added 24 hours after transfectlon for an addltkmal 16 hours. Whole-celllysates 
were subjected to lmmunoblot analyses with the lndK:ated antibodies. 
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Figure 6. Combined lnhlbttlon of AKT and Plm shows synergistic antitumor activity. A. PC3-LN4 cells were treated with Increasing doses of GSK690693 and 
SMI·4a (4a) as Indicated In media containing 0.2% serum for 72 hours followed by a MTI assay. Sb'nllar results were obtained from 3 Independent 
experiments. One representative experiment Is shown. 8, PC3-LN4 cells were plated In 10% serum and 0.7% agarose-contalnlng medium with 
10 11molll. of GSK690693 or SMI~a alone orin comblnatkm. Colonies were stained with crystal violet and counted after21 days and the data are mean ±SO of 
3 Independent experiments. Bar, 200 micrometer. C, Nu/Nu mice bearing PC3-LN4 tumors were randomized Into 4 groups: vehicle, GSK690693 
(30 mg!kg l.p. dally), SMI-4a (60 mglkg oral tw!ce/day), and the combination. Tumor sl:ze was measured every 3 days. The results are presented as the mean 
tumor volume± SEM (n c:, 6 mice/group). ••, P < 0.02 for the GSK + SMI-4a group versus all other treatment groups. D, lmmunoblot analyses of 
tumors In C with the Indicated antibodies. Tumors were harvested on day 36, 6 hours after the last dose of therapy. The numbers above each lane represent 
lndMdual tumors In that treatment group. E, a model for the feedback upregulatlon of RTK expression mediated by Plm-1 klnase. 

Discussion 

The results or these experiments provide Insights into the 
mechanisms underlying the compensatory interplay ben .. ·een 
A}...l nnd Pim-1 in the regulation or prostate cancer cell 
behavior influenced by the expression of RTKs. They suggest 
u model in which reduction in Ak.l activity is associated with 
nn increase in the levels or Pim-1 protein kinase that occurs 
through a transcriptional mechnnlsm. This Increase in Pim~ 1 
kinase Is ussoclnled, In turn, with promotion of the expression 
or RTKs through u t-up-lndcpendcnt mechanism. Downregula~ 
tion o[Pim-l blocks the feedback elevation in RTKs associated 
with inhibition or AKT (Fig. 6E). Likewise inhibitors or Pim 
synergizc \'lith small-molecule AKT Inhibitors to block the 
growth or prostate cnncer cells. 

The control ofPim~ l protein levels is complex and has been 
shown to involve the ubiquitln protcasome pathway nnd 

OFB Cancer Res: 73(11) June 1, 2013 

trnnslntional mechanisms (43). In the current study, we show 
that inhibition or AKT cnn increase the levels ofPim-1 through 
n transcriptional mechanism; however, it Is possible that 
additional alternative mechnnlsms could also play a role in 
Increasing Pim-1 protein levels. The induction ofPim-1 by A.h.."T 
Inhibition coincides with suppression ortotnl protein synthesis 
(Supplementary Fig. 59) nnd is not inhibited by [urthcr treat­
ment with mTORC inhibitors (Fig. 3A), suggesting that Pim~1 
protein levels could also be regulated in a cup-independent 
manner. The Pim-151-UTR may contain an IRES that could also 
be regulated by specific cellular growth conditions (44), 
although the existence of Utis IRES is controversial (45). 

It has been shown previously that inhibition of AKT reg­
ulates the lrnnscription of RTKs by modulating the activity of 
Foxo transcription factors (7); however, in the same study no 
change was seen In the level or HER2, RET, or MET mRNAs, 
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suggesting that the levels of specific RTKs might be controlled 
by other mechanisms. Cap-dependent translation plays a role 
in both Pl3K/ AKT and Pim-2 enhancement of the synthesis of 
specific proteins (46). It should be noted, however, that mole­
cules that blocked mTORCl activity could not inhibit the Pim-2 
protein kinase and an agent that blocked eiF4A function, 
which is known to take part in IRES mediated translation, 
was required. In nddilion, small-molecule mTORC inhibitors 
can decrease the translation of many mRNAs, for example, 5'­
tcnninal oligopyrimidine tracts mRNAs, while increasing the 
level of translation of RTKs (26), again suggesting that these 
RTK rnRNAs may be translated in a cap-independent fashion. 
Moreover, further inhibition of cap-dependent translation with 
the mTORCl/2 inhibitors, PP242 and AZD8055, had no effect 
on the ability ofGSK690693 or Pim-lto induce RTKs (Fig. 3A), 
suggesting that in the experimental conditions used in tl1ese 
studies, the mechanism by which this agent controls RTK levels 
is not cap dependent. 

Our results arc consistent with the hypotl1esis put forward 
by Muranen and colleagues that inhibition of PI3K/mTOR 
could lead to enhanced cap-independent translation (8). Clon­
ing of the Met 51-trTR into a dicistronic luciferase vector 
showed that it can function as an IRES element, although 
weakly in comparison with viral sequences, and its activity is 
enhanced by GSK690693 and Pim-1 overexpression (Fig. 4A 
and B). Further supporting evidence of U1e ability of 
GSK690693 and Pim-1 to rCbrulate the activity of the IRES is 
the observation that the IGF~JR IRES ( 47) is stimulated by tl1ese 
agents and that Pim-1 knockdown decreases the activity of this 
element (Fig. 4C). Our data further suggest that Pim-1 may be 
essential for full IRES activity of additional viral and cellular 
IRES elements, including HCV, CrPV, H!Fia, and Myc (Fig. 40), 
suggesting a general role of Pim in the control of cap-inde­
pendent translation. 

It has been suggested previously that because they are both 
survival kinases, A.I\J and Pim protein kinases could be impor­
tant phannacologic targets to inhibit tumor growth (12). Our 
experiments show a high degree of synergism between small­
molecule inhibitors of AKT and Pim in their ability to kill 
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